Ill-posedness for Subcritical Hyperdissipative Navier-stokes Equations in the Largest Critical Spaces

نویسنده

  • A. CHESKIDOV
چکیده

We study the incompressible Navier-Stokes equations with a fractional Laplacian and prove the existence of discontinuous LerayHopf solutions in the largest critical space with arbitrarily small initial data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 6 . 51 40 v 1 [ m at h . A P ] 2 8 Ju n 20 09 WELL - POSEDNESS FOR FRACTIONAL NAVIER - STOKES EQUATIONS IN CRITICAL SPACES

In this paper, we prove the well-posedness for the fractional NavierStokes equations in critical spaces G −(2β−1) n (R ) and BMO−(2β−1)(Rn). Both of them are close to the largest critical space Ḃ −(2β−1) ∞,∞ (R ). In G −(2β−1) n (R ), we establish the well-posedness based on a priori estimates for the fractional Navier-Stokes equations in Besov spaces. To obtain the well-posedness in BMO−(2β−1)...

متن کامل

Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities

In this paper, we prove the local well-posedness in critical Besov spaces for the compressible Navier-Stokes equations with density dependent viscosities under the assumption that the initial density is bounded away from zero.

متن کامل

Well-posedness for fractional Navier–Stokes equations in the largest critical spaces

and P is the Helmholtz–Weyl projection onto divergence free vector fields: P D fPj,kgj,kD1, ,n D fıj,k C RjRkgj,kD1, ,n where ıj,k is the Kronecker symbol and Rj D @j. 4/ 1=2 are the Riesz transforms. An important property of the fractional Navier–Stokes equations is its invariance under the following time and space scaling: u .t, x/D 2ˇ 1u. 2ˇ t, x/, p .t, x/D 4ˇ 2p. 2ˇ t, x/, .u0/ .x/D 2ˇ u0....

متن کامل

Well-posedness and Regularity of Generalized Navier-stokes Equations in Some Critical Q−spaces

We study the well-posedness and regularity of the generalized Navier-Stokes equations with initial data in a new critical space Q α;∞ (R ) = ∇ · (Qα(R )), β ∈ ( 1 2 , 1) which is larger than some known critical homogeneous Besov spaces. Here Qα(R ) is a space defined as the set of all measurable functions with sup(l(I)) Z

متن کامل

Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations

The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (Arch. Ration. Mech. Anal. 204 (1):189–230, 2012, and J. Math. Pures Appl. 100 (1):166–203, 2013) to a more lower regularity index a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012